レイヤー | 備考 |
---|---|
Dense | 全結合層 |
Flatten | 入力の平滑化 (1次元にする) |
Dropout | 過学習防止のために前のレイヤーの出力の一部をランダムに無視する |
レイヤー | 備考 |
---|---|
Conv1D, Convolution1D | |
Conv2D, Convolution2D | |
Conv3D, Convolution3D | |
AveragePooling1D, AvgPool1D | |
AveragePooling2D, AvgPool2D | |
AveragePooling3D, AvgPool3D | |
GlobalAvgPool1D, GlobalAveragePooling1D | |
GlobalAvgPool2D, GlobalAveragePooling2D | |
GlobalAvgPool3D, GlobalAveragePooling3D | |
MaxPool1D, MaxPooling1D | |
MaxPool2D, MaxPooling2D | |
MaxPool3D, MaxPooling3D | |
GlobalMaxPool1D, GlobalMaxPooling1D | |
GlobalMaxPool2D, GlobalMaxPooling2D | |
GlobalMaxPool3D, GlobalMaxPooling3D |
レイヤー | 備考 |
---|---|
SimpleRNN | Fully-connected RNN where the output is to be fed back to input. |
GRU | Gated Recurrent Unit - Cho et al. |
LSTM | Long-Short Term Memory unit - Hochreiter 1997. |
レイヤー | 備考 |
---|---|
LeakyReLU | Leaky version of a Rectified Linear Unit. |
PReLU | Parametric Rectified Linear Unit. |
ELU | Exponential Linear Unit. |
ThresholdedReLU | Thresholded Rectified Linear Unit. |
レイヤー | 備考 |
---|---|
Conv2DTranspose, Convolution2DTranspose | |
ConvLSTM2D |
Classes
class Activation: Applies an activation function to an output.
class ActivityRegularization: Layer that applies an update to the cost function based input activity.
class BatchNormalization: Batch normalization layer (Ioffe and Szegedy, 2014).
class Cropping1D: Cropping layer for 1D input (e.g. temporal sequence).
class Cropping2D: Cropping layer for 2D input (e.g. picture).
class Cropping3D: Cropping layer for 3D data (e.g.
class Embedding: Turns positive integers (indexes) into dense vectors of fixed size.
class GaussianDropout: Apply multiplicative 1-centered Gaussian noise.
class GaussianNoise: Apply additive zero-centered Gaussian noise.
class InputLayer: Layer to be used as an entry point into a graph.
class InputSpec: Specifies the ndim, dtype and shape of every input to a layer.
class Lambda: Wraps arbitrary expression as a Layer object.
class Layer: Abstract base layer class.
class LocallyConnected1D: Locally-connected layer for 1D inputs.
class LocallyConnected2D: Locally-connected layer for 2D inputs.
class Masking: Masks a sequence by using a mask value to skip timesteps.
class Permute: Permutes the dimensions of the input according to a given pattern.
class RepeatVector: Repeats the input n times.
class Reshape: Reshapes an output to a certain shape.
class SeparableConv2D: Depthwise separable 2D convolution.
class SeparableConvolution2D: Depthwise separable 2D convolution.
class SpatialDropout1D: Spatial 1D version of Dropout.
class SpatialDropout2D: Spatial 2D version of Dropout.
class SpatialDropout3D: Spatial 3D version of Dropout.
class UpSampling1D: Upsampling layer for 1D inputs.
class UpSampling2D: Upsampling layer for 2D inputs.
class UpSampling3D: Upsampling layer for 3D inputs.
class ZeroPadding1D: Zero-padding layer for 1D input (e.g. temporal sequence).
class ZeroPadding2D: Zero-padding layer for 2D input (e.g. picture).
class ZeroPadding3D: Zero-padding layer for 3D data (spatial or spatio-temporal).
Functions
Input(...): Input() is used to instantiate a Keras tensor.