Toggle navigation
Phaier School
正準変換 (Canonical transformation)
Liouville's theorem
∫
d
Q
d
P
=
∫
J
d
q
d
p
\int d\mathbf{Q} d\mathbf{P} = \int J d\mathbf{q} d\mathbf{p}
∫
d
Q
d
P
=
∫
J
d
q
d
p
where the Jacobian is the determinant of the matrix of partial derivatives, which we write as
J
≡
∂
(
Q
,
P
)
∂
(
q
,
p
)
J \equiv \frac{\partial \left( \mathbf{Q} , \mathbf{P} \right)}{\partial \left( \mathbf{q} , \mathbf{p} \right)}
J
≡
∂
(
q
,
p
)
∂
(
Q
,
P
)