静電場 (electrostatic field)

Coulomb's law (クーロンの法則)

F=kq1q2r2=14πε0q1q2r2\begin{aligned} {\mathbf F} & = k \frac{q_1 \cdot q_2}{r^2} \\ & = \frac{1}{4\pi \varepsilon_0 } \cdot \frac{q_1 \cdot q_2}{r^2} \end{aligned}
F(r)=q4πε0iQi(rqri)rqri3=qE(r)\begin{aligned} {\mathbf F} ( {\mathbf r} ) & = \frac{q}{4\pi \varepsilon_0} \sum_{i} \frac{Q_i ( {\mathbf r}_q - {\mathbf r}_i )}{ {| {\mathbf r}_q - {\mathbf r}_i |}^3 } \\ & = q{\mathbf E} ({\mathbf r}) \end{aligned}

真空の誘電率

ε0=1074πc2=8.854×1012[C2/Nm2]\begin{aligned} \varepsilon_0 & = \frac{10^7}{4\pi c^2} \\ & = 8.854\times 10^{-12} [C^2/N\cdot m^2] \end{aligned}

静電場

E(r)=14πε0iQi(rqri)rqri3=14πε0Vρ(r)(rr)rr3dV\begin{aligned} {\mathbf E} ( {\mathbf r} ) & = \frac{1}{4\pi \varepsilon_0} \sum_{i} \frac{Q_i ( {\mathbf r}_q - {\mathbf r}_i )}{ {| {\mathbf r}_q - {\mathbf r}_i |}^3 } \\ & = \frac{1}{4\pi \varepsilon_0} \int_V \frac{\rho ({\mathbf r'}) ( {\mathbf r} - {\mathbf r'} )}{ {| {\mathbf r} - {\mathbf r'} |}^3 } dV' \end{aligned}

原点に $ q $ がある場合

E(r)=q4πε0er {\mathbf E} ({\mathbf r}) = \frac{q}{4\pi \varepsilon_0} {\mathbf e}_r
F(r)=qE(r) {\mathbf F}( {\mathbf r}) = q {\mathbf E} ( {\mathbf r})

ガウスの法則

S0EndS=Qε0 \int_{S_0} {\mathbf E}_n \cdot d{\mathbf S} = \frac{Q}{\varepsilon_0}
÷E=Qε0 \div {\mathbf E} = \frac{Q}{\varepsilon_0}

静電ポテンシャル

dW=Fds=qEdS dW = {\mathbf F} \cdot d{\mathbf s} = q{\mathbf E}\cdot d{\mathbf S}
WAB=qABEds=q[ϕ(rA)ϕ(rB)] W_{A\rightarrow B} = q \int_{A}^{B} {\mathbf E} \cdot d{\mathbf s} = q \left[ \phi ({\mathbf r}_A) - \phi ({\mathbf r}_B) \right]

基準点付きの静電ポテンシャル

ϕ(r)=r0rEds \phi ({\mathbf r}) = - \int_{{\mathbf r}_0}^{{\mathbf r}} {\mathbf E} \cdot d{\mathbf s}

電場との関係

E(r)ds=dϕ(r) {\mathbf E} ({\mathbf r}) \cdot d{\mathbf s} = -d \phi ({\mathbf r})
E(r)=\gradϕ(r) {\mathbf E} ({\mathbf r}) = - \grad \phi ({\mathbf r})