リーマン幾何学 (Riemannian Geometry)
計量テンソル (Metric tensor)
ds2gikgkjgij∂xk∂gij∂xk∂gij∂xi∂g(x)√−g1∂xi∂√−g=gij(x)dxidxj=g′ij(x′)dx′idx′j=δij=−gij∂xk∂gij=−gilgjm∂xk∂gjm=g(x)gjm∂xi∂gjm=21gjk∂xi∂gjk
Examples
Flat spacetime with coordinates $ (t, x, y, z) $
ds2=−dt2+dx2+dy2+dz2
In spherical coordinates $ (t, r, \theta, \phi) $
ds2=−dt2+dr2+r2dΩ2
where
dΩ2=dθ2+sin2θdϕ2
is the standard metric on the 2-sphere.
The round metric on a sphere
ds2=dθ2+sin2θdϕ2
Christoffel symbols(クリストッフェル記号)
ΓkliΓjki=21gim(∂xl∂gmk+∂xk∂gml−∂xm∂gkl)=21gim(gmk,l+gml,k−gkl,m)=Γkji
Covariant derivative(共変微分)
Examples
∇aϕ∇bVa∇bVa∇cTab∇cTab=∂aϕ=∂bVa+ΓcbaVc=∂bVa−ΓabcVc=∂cTab+ΓdcaTdb+ΓdcbTad=∂cTab−ΓacdTdb−ΓbcdTad
リーマンの曲率テンソル (Riemann curvature tensor)
Am[;i;j]≡Am;i;j−Am;j;i
Am[;i;j]=RbmijAb
Symmetries and identities
Skew symmetry
[ R_{abcd} = -R_{bacd} = -R_{abdc} ]
Interchange symmetry
[ R_{abcd} = R_{cdab} ]
First Bianchi identity
[ R_{abcd} + R_{acdb} + R_{adbc} = 0 ]
[ R_{a \left[ bcd \right] } = 0 ]
Second Bianchi identity
[ R_{abcd;e} + R_{abde;c} + R_{abec;d} = \nabla_e R_{abcd} + \nabla_c R_{abde} + \nabla_d R_{abec} = 0 ]
[ R_{ab \left[ cd;e \right] } = 0 ]
アインシュタインテンソル (Einstein tensor)
Gμν=Rμν−21gμνR
The Einstein tensor is symmetric
Gμν=Gνμ
and, like the stress-energy tensor, divergenceless
Gμν;ν=∇νGμν=0