Toggle navigation
Phaier School
グランドカノニカル分布 (Grand canonical ensemble)
基本的性質
⟨
N
⟩
=
∑
i
N
i
p
i
=
1
Ξ
(
β
,
μ
)
∑
i
N
i
e
−
β
(
E
i
−
μ
N
i
)
=
1
β
∂
∂
μ
ln
Ξ
(
β
,
μ
)
\begin{aligned} \langle N \rangle & = \sum_{i} N_i p_i \\ & = \frac{1}{\Xi \left( \beta ,\mu \right)} \sum_i N_i e^{-\beta \left( E_i -\mu N_i \right)} \\ & = \frac{1}{\beta } \frac{\partial }{\partial \mu } \ln \Xi \left( \beta ,\mu \right) \\ \end{aligned}
⟨
N
⟩
=
i
∑
N
i
p
i
=
Ξ
(
β
,
μ
)
1
i
∑
N
i
e
−
β
(
E
i
−
μ
N
i
)
=
β
1
∂
μ
∂
ln
Ξ
(
β
,
μ
)