Mathematical formula
Gaussian integral
∫−∞∞e−x2dx=√π
∫−∞∞e−ax2dx=√aπ
∫−∞∞e−axbdx=b1a−1/bΓ(b1)=a−1/bΓ(1+b1)
Stirling's approximation
lnn!=nlnn−n+O(ln(n))
n!∼√2πn(en)n
Gamma function
Γ(n)=(n−1)!
Γ(21)=√π
Γ(21+n)=4nn!(2n)!√π=22(2n−1)!!√π=22nn!(2n)!√π